Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561495

RESUMO

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.

2.
Int J Nanomedicine ; 19: 3009-3029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562610

RESUMO

Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response.


Assuntos
Neoplasias da Mama , Nanopartículas , Taxoides , Humanos , Feminino , Portadores de Fármacos , Distribuição Tecidual , Cianoacrilatos , Neoplasias da Mama/tratamento farmacológico , Ácido Fólico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
4.
Bioessays ; 46(4): e2300230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412391

RESUMO

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Assuntos
Clatrina , Linfócitos T , Clatrina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Comunicação
5.
Biophys J ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596785

RESUMO

Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.

6.
Cell Mol Life Sci ; 80(7): 177, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285022

RESUMO

Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/genética , Exossomos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Corpos Multivesiculares/metabolismo , Autofagia
7.
Proc Natl Acad Sci U S A ; 120(6): e2211368120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730202

RESUMO

Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.


Assuntos
Clatrina , Sinapses Imunológicas , Clatrina/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Ativação Linfocitária
8.
Nat Commun ; 13(1): 3460, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710644

RESUMO

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Assuntos
Ligante de CD40 , Vesículas Extracelulares , Ligante de CD40/metabolismo , Vesículas Extracelulares/metabolismo , Sinapses Imunológicas , Vesículas Sinápticas , Linfócitos T
9.
iScience ; 24(10): 103100, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622155

RESUMO

Small immunoglobulin superfamily (sIGSF) adhesion complexes form a corolla of microdomains around an integrin ring and secretory core during immunological synapse (IS) formation. The corolla recruits and retains major costimulatory/checkpoint complexes, such as CD28, making forces that govern corolla formation of particular interest. Here, we investigated the mechanisms underlying molecular reorganization of CD2, an adhesion and costimulatory molecule of the sIGSF family during IS formation. Computer simulations showed passive distal exclusion of CD2 complexes under weak interactions with the ramified F-actin transport network. Attractive forces between CD2 and CD28 complexes relocate CD28 from the IS center to the corolla. Size-based sorting interactions with large glycocalyx components, such as CD45, or short-range CD2 self-attraction successfully explain the corolla 'petals.' This establishes a general simulation framework for complex pattern formation observed in cell-bilayer and cell-cell interfaces, and the suggestion of new therapeutic targets, where boosting or impairing characteristic pattern formation can be pivotal.

11.
Nat Immunol ; 21(10): 1232-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929275

RESUMO

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.


Assuntos
Antígenos CD2/metabolismo , Antígenos CD58/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Sinapses Imunológicas/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adesão Celular , Células Cultivadas , Humanos , Tolerância Imunológica , Ativação Linfocitária , Ligação Proteica , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Análise de Célula Única
12.
Elife ; 82019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31469364

RESUMO

Planar supported lipid bilayers (PSLB) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signaling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.


Assuntos
Ligante de CD40/análise , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Receptores de Antígenos/análise , Linfócitos T Auxiliares-Indutores/metabolismo , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Proteoma/análise
13.
Exp Cell Res ; 357(1): 67-78, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28450044

RESUMO

Benzyl alcohol (BnOH) is widely used as a component of foods, cosmetics, household products and medical products. It is generally considered to be safe for human use, however, it has been connected to a number of adverse effects, including hypersensitivity reactions and neonatal deaths. BnOH is a membrane fluidizing agent that can affect membrane protein activity and cellular processes such as ligand binding to cell surface receptors, endocytosis and degradation of lysosomal cargo. In this study, we examined the effects of BnOH on intracellular transport using Shiga toxin (Stx), diphtheria toxin (DT) and ricin. BnOH caused reduced toxicity of all three toxins at BnOH concentrations that cause membrane fluidization. The reduced toxicity of Stx and ricin was mainly due to inhibition of retrograde transport between endosomes and the trans-Golgi network as BnOH had small effects on cell association and endocytosis of ricin and Stx. Strikingly, BnOH also induced a reversible fragmentation of the Golgi apparatus.


Assuntos
Álcool Benzílico/farmacologia , Transporte Biológico/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Toxina Shiga/metabolismo , Rede trans-Golgi/metabolismo
14.
Traffic ; 18(3): 176-191, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067430

RESUMO

In this study, we have investigated how clathrin-dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin-coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin-dependent endocytosis by addition of LPLs in a head group size- and fatty acyl-dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose/fisiologia , Lisofosfolipídeos/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Células HeLa , Humanos , Transferrina/metabolismo
15.
Sci Rep ; 6: 30336, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458147

RESUMO

Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-ß-cyclodextrin (mßCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.


Assuntos
Lisofosfolipídeos/farmacologia , Glicoesfingolipídeos Neutros/metabolismo , Toxina Shiga/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HeLa , Humanos , Lisofosfolipídeos/química , Ligação Proteica , beta-Ciclodextrinas/farmacologia
16.
Oncotarget ; 7(18): 25443-60, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27029001

RESUMO

The ERM protein family is implicated in processes such as signal transduction, protein trafficking, cell proliferation and migration. Consequently, dysregulation of ERM proteins has been described to correlate with carcinogenesis of different cancer types. However, the underlying mechanisms are poorly understood. Here, we demonstrate a novel functional interaction between ERM proteins and the ErbB2 receptor tyrosine kinase in breast cancer cells. We show that the ERM proteins ezrin and radixin are associated with ErbB2 receptors at the plasma membrane, and depletion or functional inhibition of ERM proteins destabilizes the interaction of ErbB2 with ErbB3, Hsp90 and Ebp50. Accompanied by the dissociation of this protein complex, binding of ErbB2 to the ubiquitin-ligase c-Cbl is increased, and ErbB2 becomes dephosphorylated, ubiquitinated and internalized. Furthermore, signaling via Akt- and Erk-mediated pathways is impaired upon ERM inhibition. Finally, interference with ERM functionality leads to receptor degradation and reduced cellular levels of ErbB2 and ErbB3 receptors in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Transporte Proteico
17.
Commun Integr Biol ; 7(1): e28129, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24778763

RESUMO

We recently reported that ERM (ezrin, radixin, moesin) proteins are involved in intracellular sorting of Shiga toxin (Stx) and its receptor globotriaosylceramide (Gb3), and that depletion of ezrin and moesin reduced retrograde Golgi transport of Stx. In the same study, we found that knockdown of Vps11, a core subunit of both the homotypic fusion and protein sorting (HOPS) complex and the class C core vacuole/endosome tethering factor (CORVET), increased retrograde transport of Stx and could counteract the inhibiting effect of moesin and ezrin knockdown. In this study we demonstrate that Vps11 knockdown also leads to increased Stx toxicity as well as increased retrograde transport and toxicity of ricin. Additionally, we show that knockdown of Vps11 restores the reduced Gb3 level observed after moesin depletion.

18.
Traffic ; 14(7): 839-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23593995

RESUMO

The ERM proteins (ezrin, radixin and moesin) are known for connecting the actin cytoskeleton to the plasma membrane. They have been found to associate with lipid rafts as well as to be important for endosomal sorting and receptor signaling. However, little is known about the role of ERM proteins in retrograde transport and lipid homeostasis. In this study, we show that ezrin and moesin are important for efficient cell surface association of Shiga toxin (Stx) as well as for its retrograde transport. Furthermore, we show that depletion of these proteins influences endosomal dynamics and seems to enhance Stx transport toward lysosomes. We also show that knockdown of Vps11, a subunit of the HOPS complex, leads to increased retrograde Stx transport and reverses the inhibiting effect of ezrin and moesin knockdown. Importantly, retrograde transport of the plant toxin ricin, which binds to both glycolipids and glycoproteins with a terminal galactose, seems to be unaffected by ezrin and moesin depletion.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Toxina Shiga/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas dos Microfilamentos/genética , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricina/genética , Ricina/metabolismo , Toxina Shiga/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...